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Abstract

In this paper, we define the notion of fuzzy neighborhood filter at a set and we use it to

introduce and study the fuzzy separation axioms T3 and T4. These axioms are defined using only

the usual points and ordinary subsets as in the axioms T0, T1, T2 which introduced and studied

in part I. A similar study for T0, T1, T2 will be done for these axioms.

Keywords: Fuzzy filters, Principal fuzzy filters, Fuzzy neighborhood filters, Valued fuzzy neighbor-
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Introduction

In this second paper we continue to introduce and study the fuzzy separation axioms

which are introduced some of them in the first part. We also continue the numbering

of sections and begin therefore with Section 5. As in part I throughout this paper

we use the same terminology.

Using the notion of fuzzy neighborhood filter at the points of a set we define,

in this paper, the fuzzy neighborhood filter at this set. By means of the fuzzy

neighborhood filter at a set and at a point the fuzzy separation axioms T3, T4 are

defined. These axioms depends only on usual points and ordinary subsets so it
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is more general. Many properties for T3, T4 as in the cases ([12]) T0, T1, T2 are

fulfilled. For example: These fuzzy separation axioms are good extensions in sense

of Lowen [14], that is, the induced fuzzy topological space (X, ω(T )) is Ti if and

only if the underlying topological space (X,T ) is Ti for i = 3, 4. Moreover, each

Ti-space is Ti−1 for i = 3, 4. For each fuzzy topological space (X, τ) which is Ti, the

α-level topological space (X, τα), α ∈ L1 and the initial topological space (X, ι(τ))

are Ti for i = 3, 4. Finally, the initial and final fuzzy topological spaces of a family of

Ti-spaces, i = 3, 4, are also Ti-spaces and thus the fuzzy topological product space,

subspace, sum space and quotient space of Ti-spaces, i = 3, 4, are also Ti. Our

axioms are equivalent to the separation axioms defined by Gähler in [7] and [8].

5. T3-Spaces

In this section we define the fuzzy neighborhood filter at a set and then, using

this fuzzy neighborhood filter, notions of fuzzy regular spaces and T3-spaces are

introduced and studied.

For every fuzzy subset f of a non-empty set X, the fuzzy filter [f ] defined by [4]:

[f ](g) =
∨

f∧α≤g

sup(f ∧ α) ∨ ∨

α≤g

α

for all g ∈ LX , is called the superior principal fuzzy filter generated by f. In case L

is a complete chain and f is not constant, we have ([3]) for all g ∈ LX :

[f ](g) =





sup f if f ≤ g,
∧

g(x)<f(x)
g(x) otherwise.

For each subset M of X we have

[χM ] =
∨

x∈M

ẋ,

where χM is the characteristic function of M .

The fuzzy neighborhood filter N (x) at a point x is defined by Gähler in [6] and

for the fuzzy neighborhood filter N (F ) at a set F ⊆ X we define it here by means
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of N (x), x ∈ F as:

N (F ) =
∨

x∈F

N (x).

It is clear that N (F ) is a fuzzy filter on X and moreover,

N (F ) ≥ [χF ].

Definition 5.1 A fuzzy topological space (X, τ) is called regular if N (x) ∧ N (F )

does not exist for all x ∈ X,F ∈ P (X) with F = clτF and x 6∈ F .

Definition 5.2 A fuzzy topological space (X, τ) is called T3 if it is regular and T1.

The following Lemma is necessary to prove the next proposition.

Lemma 5.1 For every fuzzy topological space (X, τ) and each x ∈ X we have

cl ẋ = ẋ implies clτ{x} = {x}.

Proof. Let cl ẋ = ẋ. Then f(x) =
∨

clτ g≤f
g(x) for all f ∈ LX and since

clτx1(y) =
∨

M≤N (y)

M(x1) = intτx1(y) =
∨

clτ g≤intτ x1

g(y) ≤ ∨

clτ g≤x1

g(y) = x1(y).

Hence, clτx1 = x1, that is, clτ{x} = {x}. 2

Proposition 5.1 Every T3-space is T2-space.

Proof. If (X, τ) is T3 and x 6= y, then (X, τ) is T1. By Theorem 3.1, we have

cl ẋ = ẋ for all x ∈ X and by means of Lemma 5.1, we have clτ {x} = {x}, since

(X, τ) is regular, then y 6∈ {x} = clτ {x} implies N (x)∧N (y) does not exist. Hence,

(X, τ) is T2. 2

In the following theorem there will be introduced some equivalent definitions for

the regular spaces.

Theorem 5.1 For each fuzzy topological space (X, τ) the following are equivalent.
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(1) (X, τ) is regular.

(2) For all x ∈ X, F ∈ P (X) with F = clτF and x 6∈ F we have clN (x) 6≤ N (y)

and clN (y) 6≤ N (x) for each y ∈ F .

(3) clN (x) = N (x) for each x ∈ X.

(4) For each x ∈ X, we have M≤ N (x) implies clM≤ N (x) for all fuzzy filters

M on X.

Proof. (1) ⇒ (2): According to (1) we have N (x) ∧N (F ) does not exist and then

N (x) ∧ (
∨

y∈F
N (y)) =

∨
y∈F

(N (x) ∧N (y)) does not exist. Hence, N (x) ∧N (y) for all

x 6∈ F , y ∈ F , x 6= y does not exist. From Proposition 4.1 we get ẋ 6≤ N (y) and

ẏ 6≤ N (x) and therefore from Lemma 2.2. we get clN (x) 6≤ N (y) and clN (y) 6≤
N (x). Hence, (2) holds.

(2) ⇒ (3): From (2) we have clN (x) 6≤ N (y) for all x ∈ X, F ∈ P (X) with

F = clτF and x 6∈ F and for each y ∈ F . Thus clN (x) ≤ N (z) for all z ∈ X \ F

and hence clN (x) ≤ N (x). That is, clN (x) ≤ N (x) for all x ∈ X. Therefore,

N (x) = clN (x) for all x ∈ X.

(3) ⇒ (4): Let (3) be hold and M ≤ N (x) for each x ∈ X. Then from the

property (1.6) of the closure operator we have clM ≤ clN (x). From clN (x) =

N (x) it follows clM≤ N (x).

(4) ⇒ (1): Let (4) be hold. Then clN (x) ≤ N (x) and hence N (x) = clN (x)

for all x ∈ X. Therefore, N (x) ∧ N (y) does not exist for each y 6= x and hence

N (x) ∧ N (y) does not exist for all y ∈ F and x 6∈ F with F = clτF . Thus

N (x) ∧N (F ) fulfills the condition of regular space. That is, (1) holds. 2

Condition (4) means if M -
τ

x, then also clM -
τ

x.

Example 5.1 For L is a complete chain and the space (X, τ) as in Example 4.2,

where X = {x, y} and τ = {0, 1, x1, y1}, let x ∈ X, F = {y} = clτF in P (X), we get

N (x) ∧N (F ) does not exist, and also, for y ∈ X, F = {x} = clτF in P (X), we get
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N (F ) ∧ N (y) does not exist. Thus, (X, τ) is regular. We also can find f = y1 and

g = x1 such that f(x) < N (y)(f) and g(y) < N (x)(g) and this means ẋ 6≤ N (y)

and ẏ 6≤ N (x). Hence, (X, τ) is T1 and thus (X, τ) is T3.

Example 5.2 The indiscrete fuzzy topological space (X, τ), where X = {1, 2},
given in Example 2.1, is not T1 and hence it is not T3.

A topological space (X, T ) is called regular if for all x ∈ X, F ∈ P (X) with F =

clτF , x 6∈ F there exist neighborhoods Ox of x and OF of F such that Ox∩OF = ∅.
(X,T ) is called T3 if it is regular and T1.

Proposition 5.2 A topological space (X,T ) is T3 if and only if the induced fuzzy

topological space (X,ω(T )) is T3.

Proof. By means of Proposition 3.2 we have (X, T ) is T1 equivalent to (X,ω(T ))

is T1.

Now, let (X,T ) be regular and let x 6∈ F and F = clτF . Then there are Ox ∈ T

and OF ∈ T such that Ox ∩ OF = ∅. If we take f = χOx , g = χOF
, then from that

χOx , χOF
∈ ω(T ) hold we get

N (x)(f) ∧N (F )(g) = (intω(T )f)(x) ∧ ∧

y∈F

(intω(T )g)(y) = 1 > sup(f ∧ g).

Hence, N (x) ∧N (F ) does not exist.

Conversely, if (X, ω(T )) is regular and x 6∈ F = clτF , then there are f, g ∈ LX

such that

N (x)(f) ∧N (F )(g) > sup(f ∧ g).

This means

intω(T )f(x) ∧ ∧

y∈F

(intω(T )g(y)) > sup(f ∧ g)

and hence

intω(T )f(x) > sup(f ∧ g)
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and

intω(T )g(y) > sup(f ∧ g) for each y ∈ F.

Since intω(T )f, intω(T )g ∈ ω(T ), taking α = sup(f∧g), then x ∈ sα(intω(T )f) ∈ T and

y ∈ sα(intω(T )g) ∈ T for each y ∈ F , that is, sα(intω(T )f) = Ox and sα(intω(T )g) =

OF are neighborhoods of x and F , respectively and moreover,

N (x)(f) ∧N (y)(g) > α

for each x 6∈ F implies Ox ∩ OF = sα(intω(T )f ∧ intω(T )g) = ∅. 2

In the following propositions will be shown that the initial fuzzy topological space

(X, τ) of a family ((Xi, τi))i∈I of T3-spaces is also T3.

Remark 5.1 To show that the initial fuzzy topological space (X, τ) of a family

((Xi, τi))i∈I of T0, T1, T2-spaces the mappings fi for some i ∈ I must be injective

but in the case of T3, T4 will be shown that the mappings fi must be also closed.

At first consider the case of I being a singleton.

Proposition 5.3 Let (Y, σ) be a T3-space and let f : X → Y be an injective fuzzy

closed mapping. Then the initial fuzzy topological space (X, f−1(σ)) is also T3.

Proof. From Proposition 3.4 it follows that (X, f−1(σ)) is T1-space.

Now let x ∈ X and F a closed subset of X with x 6∈ F . Since f is injective and

closed, then f(x) 6∈ f(F ) and f(F ) is a closed subset of Y and from that (Y, σ) is

regular it follows N (f(x)) ∧ N (f(F )) does not exist, that is, there exist g, h ∈ LY

such that

N (f(x))(g) ∧N (f(F ))(h) > sup(g ∧ h)

and this means

(intσg)(f(x)) ∧ ∧

y∈f(F )

(intσh)(y) = (intσg)(f(x)) ∧ ∧

z∈F

(intσh)(f(z)) > sup(g ∧ h).
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Because of that f : (X, f−1(σ)) → (Y, σ) is fuzzy continuous we have (intσg) ◦ f ≤
intf−1(σ)(g ◦ f) for all g ∈ LY and we have also sup(g ∧ h) ≥ sup((g ◦ f) ∧ (h ◦ f))

hence we get

(intf−1(σ)(g ◦ f))(x) ∧ ∧

z∈F

(intf−1(σ)(h ◦ f))(z) > sup((g ◦ f) ∧ (h ◦ f)).

Thus there exist k = g ◦ f, l = h ◦ f ∈ LX such that

(intf−1(σ)k)(x) ∧ ∧

z∈F

(intf−1(σ)l)(z) > sup(k ∧ l).

Hence, (X, f−1(σ)) is a regular space. This means (X, f−1(σ)) is T1 and regular and

therefore it is T3-space. 2

Now consider the case of I be an arbitrary class.

Proposition 5.4 Let (Xi, τi) be a T3-space for all i ∈ I and let fi : X → Xi, for

some i ∈ I, be an injective fuzzy closed mapping. Then the initial fuzzy topological

space (X, τ) is also T3.

Proof. Proposition 3.5 shows that (X, τ) is T1-space.

If x ∈ X and F is a closed subset of X with x 6∈ F , then fi is injective and closed

imply fi(x) 6∈ fi(F ) and fi(F ) is a closed subset of Xi and from that (Xi, τi) is regular

it follows N (fi(x)) ∧N (fi(F )) does not exist, that is, there exist λi, µi ∈ LXi such

that

(intτi
λi)(fi(x))∧ ∧

y∈fi(F )

(intτi
µi)(y) = (intτi

λi)(fi(x))∧∧

z∈F

(intτi
µi)(fi(z)) > sup(λi∧µi).

Since fi is fuzzy continuous, then (intτi
λi) ◦ fi ≤ intτ (λi ◦ fi) for all λi ∈ LXi . Hence

intτ (λi ◦ fi)(x) ∧ ∧

z∈F

(intτ (µi ◦ fi))(z) > sup(λi ∧ µi) ≥ sup((λi ◦ fi) ∧ (µi ◦ fi)).

This means we have λ = λi ◦ fi ∈ LX , µ = µi ◦ fi ∈ LX such that

(intτλ)(x) ∧ ∧

z∈F

(intτµ)(z) > sup(λ ∧ µ).
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Hence, (X, τ) is a regular space and therefore it is T3-space. 2

The following result is a direct consequence of Propositions 5.3 and 5.4.

Corollary 5.1 The fuzzy topological subspace and the fuzzy topological product

space of T3-spaces are also T3.

Now we shall show that the final fuzzy topological space (X, τ) of a family

((Xi, τi))i∈I of T3-spaces is also T3.

Proposition 5.5 If (X, τ) is a T3-space and f : X → Y a surjective fuzzy open

mapping, then the final fuzzy topological space (Y, f(τ)) is also T3.

Proof. Let y ∈ Y and F be a closed subset of Y with y 6∈ F . Since f is surjective

and continuous, then f−1(y) ∈ X and f−1(F ) is a closed subset of X with f−1(y) 6∈
f−1(F ). From that (X, τ) is a regular space it follows N (f−1(y))∧N (f−1(F )) does

not exist, that is, there are g, h ∈ LX such that

(intτg)(f−1(y)) ∧ ∧

z∈f−1(F )

(intτh)(z) > sup(g ∧ h)

which means

(intτg)(f−1(y)) ∧ ∧

x∈F

(intτh)(f−1(x)) > sup(g ∧ h)

and this means

(f(intτg))(y) ∧ ∧

x∈F

(f(intτh))(x) > sup(g ∧ h).

Since f is fuzzy open, it follows f(intτg) ≤ intf(τ)(f(g)) for all g ∈ LX and therefore

(intf(τ)f(g))(y) ∧ ∧

x∈F

(intf(τ)f(h))(x) > sup(g ∧ h) ≥ sup(f(g) ∧ f(h)).

Since f(g), f(h) ∈ LY , then we get that the final fuzzy topological space (Y, f(τ))

is regular. From Proposition 3.6 we have (Y, f(τ)) is T1-space and therefore it is

T3-space. 2
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Proposition 5.6 Let I be any class and (Xi, τi) be a T3-space for all i ∈ I and

fi : Xi → X be a surjective fuzzy open mapping for some i ∈ I. Then the final fuzzy

topological space (X, τ) is also T3.

Proof. Let x ∈ X and F be a closed subset of X with x 6∈ F . Since fi is

surjective and continuous, then f−1
i (x) ∈ Xi and f−1

i (F ) is a closed subset of Xi

with f−1
i (x) 6∈ f−1

i (F ). From that (Xi, τi) is regular it follows there are λi, µi ∈ LXi

such that

(intτi
λi)(f

−1
i (x)) ∧ ∧

y∈f−1
i (F )

(intτi
µi)(y) > sup(λi ∧ µi)

which means

(intτi
λi)(f

−1
i (x)) ∧ ∧

z∈F

(intτi
µi)(f

−1
i (z)) > sup(λi ∧ µi)

and this means

(fi(intτi
λi))(x) ∧ ∧

z∈F

(fi(intτi
µi))(z) > sup(λi ∧ µi).

Since fi is fuzzy open, it follows fi(intτi
λi) ≤ intτ (fi(λi)) for all λi ∈ LXi and

therefore

intτfi(λi)(x) ∧ ∧

z∈F

intτfi(µi)(z) > sup(λi ∧ µi) = sup(fi(λi) ∧ fi(µi)).

Since fi(λi), fi(µi) ∈ LX , then we get that the final fuzzy topological space (X, τ) is

regular. Proposition 3.7 states that (X, τ) is T1-space and therefore it is T3-space.

2

The following result is a direct consequence of Propositions 5.5 and 5.6.

Corollary 5.2 The fuzzy topological sum space and the fuzzy topological quotient

space of T3-spaces are also T3.

In the following it will be shown that the finer fuzzy topological space of T3 is

also T3.
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Proposition 5.7 Let (X, τ) be a T3-space and let σ be a fuzzy topology on X finer

than τ . Then (X, σ) is also T3-space.

Proof. Let x ∈ X and F be a closed subset of X with x 6∈ F and let Nτ (x), Nσ(x)

be the fuzzy neighborhood filters of the spaces (X, τ), (X, σ), respectively, at x.

Since (X, τ) is regular, then Nτ (x)∧Nτ (F ) does not exist. σ is finer than τ implies

Nσ(x) ≤ Nτ (x) and Nσ(F ) ≤ Nτ (F ) and thus Nσ(x) ∧ Nσ(F ) ≤ Nτ (x) ∧ Nτ (F ).

Hence Nσ(x)∧Nσ(F ) does not exist and therefore (X, σ) is also regular. Proposition

3.8 states that (X, σ) is T1-space and thus it is T3-space. 2

6. T4-Spaces

Using the neighborhood filter at a set, defined in the last section, we define here a

notion of the fuzzy normal space and T4-space.

Definition 6.1 A fuzzy topological space (X, τ) is called normal if for all F1, F2 ∈
P (X) with F1 = clτF1, F2 = clτF2 and F1 ∩ F2 = ∅ we have N (F1) ∧ N (F2) does

not exist.

Definition 6.2 A fuzzy topological space (X, τ) is called T4 if it is normal and T1.

Proposition 6.1 Every T4-space is T3-space.

Proof. If (X, τ) is T4, then it is T1 and thus by Lemma 5.1 clτ{x} = {x} for all

x ∈ X. Thus x 6∈ F = clτF implies we have F1 = {x} = clτ{x} and F2 = F = clτF

with F1 ∩ F2 = ∅ and hence N (x) ∧N (F ) does not exist. That is, (X, τ) is regular

and it is T1. Therefore, (X, τ) is T3. 2

Theorem 6.1 Let (X, τ) be a fuzzy topological space. Then the following are equiv-

alent.

(1) (X, τ) is normal.
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(2) For all F1, F2 ∈ P (X) with F1 = clτF1, F2 = clτF2 and F1 ∩ F2 = ∅ we have

clN (F1) 6≤ N (F2) and clN (F2) 6≤ N (F1).

(3) clN (F ) = N (F ) for all F ∈ P (X) with F = clF .

(4) For all F ∈ P (X) with F = clτF we have M ≤ N (F ) implies clM ≤ N (F )

for all fuzzy filters M on X.

Proof. (1) ⇒ (2): For all F1, F2 ∈ P (X) with Fi = clτFi, i = 1, 2 and F1 ∩ F2 = ∅
we have N (F1) ∧ N (F2) does not exist and hence N (x) ∧ N (y) does not exist

for all x ∈ F1 and y ∈ F2. Thus by means of Lemma 2.2, clN (x) 6≤ N (y) and

clN (y) 6≤ N (x) and therefore clN (F1) 6≤ N (F2) and clN (F2) 6≤ N (F1).

(2) ⇒ (3): Let (2) be hold. Then clN (F ) 6≤ N (G) for all F,G ∈ P (X) with

F = clτF , G = clτG and G ⊆ X \ F . Hence, clN (F ) ≤ N (H) for all H ⊆ F and

thus clN (F ) ≤ N (F ). Hence, N (F ) = clN (F ) for all F ∈ P (X) with F = clτF .

(3) ⇒ (4): Let (3) be hold. Then N (F ) = clN (F ) holds, M ≤ N (F ) implies

clM≤ clN (F ) = N (F ). Hence, (4) holds.

(4) ⇒ (1): Let F1, F2 ∈ P (X) with Fi = clτFi, i = 1, 2 and F1 ∩ F2 = ∅. (4)

implies clN (Fi) = N (Fi), i = 1, 2 and hence N (F1) ∧N (F2) does not exist. 2

Example 6.1 Since in the space (X, τ) in Example 5.1, where X = {x, y}, τ =

{0, 1, x1, y1}, we have {x} and {y} are the only closed sets which fulfill the condition

of the normal space and N (x) ∧ N (y) does not exist. Hence, (X, τ) is normal and

since (X, τ) is T1 it follows (X, τ) is T4.

A topological space (X, T ) is called normal if for all F1 ∈ P (X),F2 ∈ P (X)

with F1 = clτF1, F2 = clτF2 there exist neighborhoods OF1 and OF2 such that

OF1 ∩ OF2 = ∅. (X,T ) is called T4 if it is normal and T1.

Proposition 6.2 A topological space (X,T ) is T4 if and only if the induced fuzzy

topological space (X,ω(T )) is T4.
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Proof. From Proposition 3.2 we get (X, T ) is T1 if and only if (X, ω(T )) is T1. If

(X,T ) is normal and F1, F2 ∈ P (X), Fi = clτFi, i = 1, 2 and F1∩F2 = ∅, then there

are OF1 ,OF2 ∈ T such that OF1 ∩ OF2 = ∅. Hence, there are f = χOF1
, g = χOF2

∈
LX for which

N (F1)(f) ∧N (F2)(g) =
∧

x∈F1

intω(T )f(x) ∧ ∧

y∈F2

intω(T )g(y) = 1 > sup(f ∧ g).

Thus N (F1) ∧N (F2) does not exist, that is, (X, ω(T )) is normal.

Conversely, let (X, ω(T )) be normal and let Fi = clτFi for i = 1, 2 and F1 ∩ F2 = ∅.
Then there are f, g ∈ LX for which

∧

x∈F1

(intω(T )f(x)) ∧ ∧

y∈F2

(intω(T )g(y)) > sup(f ∧ g). (6.1)

Since, intω(T )f ∈ ω(T ) and intω(T )f(x) > sup(f ∧ g) for each x ∈ F1, then, taking

α = sup(f ∧ g), we get F1 ⊆ sα(intω(T )f) and sα(intω(T )f) ∈ T . Similarly, we get

F2 ⊆ sα(intω(T )g) ∈ T . Hence, there are neighborhoods OF1 = sα(intω(T )f) and

OF2 = sα(intω(T )g) of F1 and F2, respectively, and moreover because of (6.1) we get

OF1 ∩ OF2 = sα(intω(T )f ∧ intω(T )g) = ∅.

Thus (X, T ) is normal. 2

The following propositions show that the initial fuzzy topological space (X, τ)

of a family ((Xi, τi))i∈I of T4-spaces, whenever fi : X → Xi for some i ∈ I is an

injective fuzzy closed mapping, is also T4.

For the case of I being a singleton we get the following result.

Proposition 6.3 Let (Y, σ) be a T4-space and let f : X → Y be an injective fuzzy

closed mapping. Then the initial fuzzy topological space (X, f−1(σ)) is also T4.

Proof. Let F, G be disjoint closed subsets of X. From that f is injective and closed

it follows f(F ), f(G) are also disjoint closed subsets of Y . Since (Y, σ) is normal
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space, then N (f(F )) ∧ N (f(G)) does not exist, that is, there exist g, h ∈ LY such

that
∧

x∈f(F )

(intσg)(x) ∧ ∧

y∈f(G)

(intσh)(y) > sup(g ∧ h)

and this means

∧

z∈F

(intσg)(f(z)) ∧ ∧

w∈G

(intσh)(f(w)) > sup(g ∧ h)

which means

∧

z∈F

((intσg) ◦ f)(z) ∧ ∧

w∈G

((intσh) ◦ f)(w) > sup((g ◦ f) ∧ (h ◦ f)).

Because of that f : (X, f−1(σ)) → (Y, σ) is fuzzy continuous it follows (intσg) ◦ f ≤
intf−1(σ)(g ◦ f) for all g ∈ LY and thus we have

∧

z∈F

(intf−1(σ)(g ◦ f))(z) ∧ ∧

w∈G

(intf−1(σ)(h ◦ f))(w) > sup((g ◦ f) ∧ (h ◦ f)).

Thus there exist k = g ◦ f, l = h ◦ f ∈ LX such that

∧

z∈F

(intf−1(σ)k)(z) ∧ ∧

w∈G

(intf−1(σ)l)(w) > sup(k ∧ l).

Hence, (X, f−1(σ)) is a normal space. From Proposition 3.4 it follows that the space

(X, f−1(σ)) is T1 and therefore it is T4-space. 2

Now consider the case of I be any class.

Proposition 6.4 Let (Xi, τi) be a T4-space for all i ∈ I and let fi : X → Xi, for

some i ∈ I, be an injective fuzzy closed mapping. Then the initial fuzzy topological

space (X, τ) is also T4.

Proof. If F, G are disjoint closed subsets of X, then fi is injective and closed imply

fi(F ), fi(G) are also disjoint closed subsets of Xi. From that (Xi, τi) is normal

space it follows N (fi(F ))∧N (fi(G)) does not exist, that is, there exist λi, µi ∈ LXi

such that
∧

x∈fi(F )

(intτi
λi)(x) ∧ ∧

y∈fi(G)

(intτi
µi)(y) > sup(λi ∧ µi).
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Therefore
∧

z∈F

(intτi
λi)(fi(z)) ∧ ∧

w∈G

(intτi
µi)(fi(w)) > sup(λi ∧ µi)

and this means

∧

z∈F

((intτi
λi) ◦ fi)(z) ∧ ∧

w∈G

((intτi
µi) ◦ fi)(w) > sup((λi ◦ fi) ∧ (µi ◦ fi)).

Since fi is fuzzy continuous, then

∧

z∈F

(intτ (λi ◦ fi))(z) ∧ ∧

w∈G

(intτ (µi ◦ fi))(w) > sup((λi ◦ fi) ∧ (µi ◦ fi)).

This means we have λ = λi ◦ fi ∈ LX , µ = µi ◦ fi ∈ LX such that

∧

z∈F

(intτλ)(z) ∧ ∧

w∈G

(intτµ)(w) > sup(λ ∧ µ).

Hence, (X, τ) is a normal space. From Proposition 3.5 we have (X, τ) is T1-space

and therefore it is T4-space. 2

The following result is a direct consequence of Propositions 6.3 and 6.4.

Corollary 6.1 The fuzzy topological subspace and the fuzzy topological product

space of T4-spaces are also T4.

Now we are going to show that the final fuzzy topological space (X, τ) of a family

((Xi, τi))i∈I of T4-spaces is also T4.

Proposition 6.5 If (X, τ) is a T4-space and f : X → Y a surjective fuzzy open

mapping, then the final fuzzy topological space (Y, f(τ)) is also T4.

Proof. Let F, G be disjoint closed subsets of Y . Since f is surjective and continuous,

then f−1(F ), f−1(G) are also disjoint closed subsets of X. From that (X, τ) is

normal space it follows N (f−1(F )) ∧ N (f−1(G)) does not exist, that is, there are

g, h ∈ LX such that

∧

z∈f−1(F )

(intτg)(z) ∧ ∧

w∈f−1(G)

(intτh)(w) > sup(g ∧ h)
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which means

∧

x∈F

(intτg)(f−1(x)) ∧ ∧

y∈G

(intτh)(f−1(y)) > sup(g ∧ h)

and this means

∧

x∈F

(f(intτg))(x) ∧ ∧

y∈G

(f(intτh))(y) > sup(g ∧ h).

Since f is fuzzy open, it follows f(intτg) ≤ intf(τ)(f(g)) for all g ∈ LX and therefore

∧

x∈F

(intf(τ)f(g))(x) ∧ ∧

y∈G

(intf(τ)f(h))(y) > sup(f(g) ∧ f(h)).

Since f(g), f(h) ∈ LY , then we get that the final fuzzy topological space (Y, f(τ))

is normal. From Proposition 3.6 we have (Y, f(τ)) is T1-space and therefore it is

T4-space. 2

Proposition 6.6 Let I be any class and (Xi, τi) be a T4-space for all i ∈ I and

fi : Xi → X be a surjective fuzzy open mapping for some i ∈ I. Then the final fuzzy

topological space (X, τ) is also T4.

Proof. Let F, G be disjoint closed subsets of X. Since fi is surjective and contin-

uous, then f−1
i (F ), f−1

i (G) are also disjoint closed subsets of Xi. Because of that

(Xi, τi) is normal it follows there are λi, µi ∈ LXi such that

∧

z∈f−1
i (F )

(intτi
λi)(z) ∧ ∧

w∈f−1
i (G)

(intτi
µi)(w) > sup(λi ∧ µi)

which means

∧

x∈F

(intτi
λi)(f

−1
i (x)) ∧ ∧

y∈G

(intτi
µi)(f

−1
i (y)) > sup(λi ∧ µi)

and this means

∧

x∈F

(fi(intτi
λi))(x) ∧ ∧

y∈G

(fi(intτi
µi))(y) > sup(λi ∧ µi).
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Since fi is fuzzy open, it follows fi(intτi
λi) ≤ intτ (fi(λi)) for all λi ∈ LXi and

therefore

∧

x∈F

(intτfi(λi))(x) ∧ ∧

y∈G

(intτfi(µi))(y) > sup(fi(λi) ∧ fi(µi)).

Since fi(λi), fi(µi) ∈ LX , then we get that the final fuzzy topological space (X, τ)

is normal. From Proposition 3.7 it follows that (X, τ) is T1-space and hence it is

T4-space. 2

The following result is a direct consequence of Propositions 6.5 and 6.6.

Corollary 6.2 The fuzzy topological sum space and the fuzzy topological quotient

space of T4-spaces are also T4.

The following proposition shows that the finer fuzzy topological space of T4 is

also T4.

Proposition 6.7 Let (X, τ) be a T4-space and let σ be a fuzzy topology on X finer

than τ . Then (X, σ) is also T4-space.

Proof. Let F, G be disjoint closed subsets of X and let Nτ (F ), Nσ(F ) be the fuzzy

neighborhood filters of the spaces (X, τ), (X, σ), respectively, at F . From that (X, τ)

is normal it follows Nτ (F ) ∧ Nτ (G) does not exist. Since σ is finer than τ , then

Nσ(F ) ≤ Nτ (F ) and Nσ(G) ≤ Nτ (G) and thus Nσ(F ) ∧Nσ(G) ≤ Nτ (F ) ∧Nτ (G).

Hence Nσ(F ) ∧ Nσ(G) does not exist and therefore (X, σ) is also normal. From

Proposition 3.8 it follows that (X, σ) is T1-space and thus it is T4-space. 2
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